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Introduction to baricentric geometry with
applications

Arkady M. Alt 4

ABSTRACT. In this paper we present some interesting applications of the
baricentric geometry.

MAIN RESULTS

Some preliminary facts. First recall that any two non collinear vectors
OA, OB create a basis on the plane with origin O, that is for any vector
OC' there are unique p, ¢ € R such that

O?:pO_/iqu@

and we saying that pair (p, q) is coordinates of OZ% in the basis (67{, O‘B))

—
and (ﬁ is linear combination of OA and O? with coefficients p and ¢.Also
note thatﬁoint C belong to the segment AB iff O? is linear combination of
vectors OA, OB with non negative coefficients p and such that p+ ¢ = 1. (in

that case we saying that 58 is convex combination of vectors (‘)Tél), 5§ or
that segment AB is convex combination of his ends).
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Indeed let C belong to the segment AB. If C' € {A,B } then
A0 = kﬁ,where ke {0,1} IfC ¢ {A,B } then AC is collinear with
A_B) and directed as E ,that is @ = kAB for some positive k.Hence,

2]
|25

Thus, if C belong to the segment AB then AC =kAB with k € [0,1] and
since

<

|42 | = [[<25] = & 23] < -

AG =40 +0C = 0C - 04,4B =40 +OB =0B - 04
Z@ — kAB < O?—@)l :k((_ﬂS’) —ﬁ) =
— ¢ — 108 151+ 04 =
OC = (1-k)OA+k0A < OC =pOA +qO4,

where p:=1—k,q := k,that isp,¢q >0and p+q=1.

Opposite, let
O? = pﬁ -t qO? ;

where p+¢g=1 and p,q > 0. Then, by reversing transformation above we
obtain zﬁ = gAB,q € [0,1]. and since

CB =CA+AB = AB — AC = AB — qAB = (1— q) AB

we obtain

then

|4¢] =« |22

3] = o - 47|

Therefore,

22 =[] + |3 = ¢

belong to the segment AB.
Another variant:

Let a ::(ﬂ, b ::O? and ¢ :=O?. Note that C € AB iff c—a is collinear to
b—a, that isc—a =k (b—a) for some real k and
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|AC| +|CB| = |AB), that is [lc — a|| + ||b - c|| = ||b — a|| .Thus,

c—a=k(b—a)
Cean o= { [ T
Since
b—c:b—a—(c—a):b—a—k(b—a):(l—k)(b—a)
then

lle—all + 1o~ cf =
=lb—al <= [k®-a)l+ 01—k (b-a)ll = [b-a]

KL= a)ll + 1 = K) (|- )] =

=llb—all <= |k|+|1-k)|=1 & 0<k<1.

Hence, C € AB <= c—a=k(b—a) < c=a(l—k)+ kb, where
ke [0,1].

Barycentric coordinates.

Let A, B, C be vertices of non-degenerate triangle. Then, since E and

AC' non-colinear, then for each point P on plain we have unique
representation ﬁ = k;lﬁ + 1Z8 ,where k,1 € R. Let O be a any point fixed
on the plain. Then since

AP = 40 + OB, 4B = 40 + 0B, 4C = 40 + 0¢

we obtain

A0 + 0P = & (10+08) +1 (16 + 0C) s OF -

=(1—k—1)OA + kOB +10C.
Denote p, =1-k—-l,pp:=k,p:=1, then p, +pp +p. =1 and

O—P) = paO_)A +pb6§ —!—pc_O?.
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Suppose we have another such representation
0413) = qa071 = qb@ I QCO?

with ¢, + g + g. = 1, then

ﬁzpbﬁ +pczﬁ=%xﬁ +qcz44(} = Db = @b,

Pc =4qc = Pa = {a

Since for each point P we have unique ordered triple of real numbers
(Pa, Py, Pc) which satisfy to condition

Pat+Dppb+pc=1

and since any such ordered triple determine some point on plain, then will
call such triples barycentric coordinates of point P with respect to triangle
AABC, because in reality barycentric coordinates independent from origin
0. Indeed let O; another origin, then

0?261?4—07: (pa+pb+pc)51®+paﬁ+pb(_)§+pc0?=
DPa (m‘FO—X‘l) + po (0_15+(ﬁ3)) + Pe <m+07) e
:Pao_lf‘>1+Pb0—1§+(_))+pcO?

If pa, Py, pc > 0 then P is interior point of triangle and in that case we have
clear geometric interpretation of numbers pg, pp, pc.Really,since

O?:paoj'*‘(pb‘*‘pc)( Gl O_B)+ L Oﬁ)

Db + Pe Db + Dc

then linear combination

Pb 5§ i Dc O?

Db+ Pe Db+ Pe
determine some point A; on the segment BC such that

O—Ai: L Z)_B)+ i @andﬁ:paa-l—(pa-l—m)aﬁ.
Db + Pc Db + Pe

In particularly,

ﬁ pb + pc OA1
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So, P belong to the segment AAjand divide it in the ratio
AP =+ PA; = (py + pc) + pa.
By the same way we obtain points B1,Cy on CA, AB, respectively, and
BP + PB1 = (pe+ pa) + py, CP + PCy = (pg + py) + pe.
Denote
F, :=[PBC], Fy:=[PCA|],F, := [PAB], F :=[ABC]
then

pc+pa:ABl+CBlZFC+Fa,pa+pb=Bcl+AclZFa+Fb,

Pb+pc=BC; + ACy = F, + F.. So,pa+pb+pc:Fa+Fb+Fc
I F,
7

and p, = —=,pp = =2, p, =
F F

Application 1. Barycentric coordinates of some triangle centres.

Problem 1. Find barycentric coordinates of the following Triangle centers:
a). Centroid G (the point of concurrency of the medians);
b). Incenter I (the point of concurrency of the interior angle bisectors);

c). Orthocenter H of an acute triangle (the point of concurrency of the
altitudes);
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d). Circumcenter O.

Solution.
a). Since for P = G we have F, = F, = F, then

(Pa> Dby Pe) = (1/3v 1/3, 1/3)

is barycentric coordinates of centroid G.
b). Since for P = I we have

Fc _ BAl C

Fe _ BA Fo _ BOY
F,  AC b F

then
F,~F+~F.=a+b+c
and, therefore,
1
a+b+c

is barycentric coordinates of incenter I.
c). For P = H we have

(Pa>Pb, Pc) = (a,b,c)

BA; = ccos B, A;C =bcosC, BCy = acos B,C1A =bcos A.

Hence,
g BA; ccosB 2RsinCcos B tanC

F, A;C  bcosC 2RsinBcosC  tanB’

F, BCi acosB _ tan A

F, o . F,+F,+F.=tanA+tanB =t
F,b, Ci{A bcosA tanB = b an an anC

and, since
1
tan A,tan B, t =
tanA+tanB+tanC'( an A, tan B, tan C)
1
tanAtanBtanC(tanA’ an B, tan C) = (cot B cot C, cot C cot A, cot A cot B),
then

(Pa, Db, Pc) = (cot B cot C, cot C cot A, cot A cot B)

is barycentric coordinates of orthocenter H.
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d). For P =0 since ZBOC = 2A, ZCOA =2B,/A0B = 2C we have

P stin2A’Fb K Rgsin2B,FC . R%sin2C
2 2 2
and, therefore*,
1
= in 24, sin 2B, sin 20) =
(Pa o, pe) Sin2A + 50 2B + sin20 S0 24,528, sin 2C)
= ! (sin24,sin 2B, sin 2C) =
~ 4sin Asin BsinC it L

sin Bsin C” sin C'sin A’ sin A sin B
is barycentric coordinates of circumcenter O.
* Note that

( cos A cos B cos C' )

sin 24 + sin 2B + sin 2C = 4sin Asin Bsin C

Problem 2.

a). Let Ay, By, C) be, respectively, points of tangency of incircle to sides
BC,CA, AB of a triangle ABC. Prove that cevians AA,,BBy,CCj are
intersect at one point and find barycentric coordinates of this point.

b). The same questions if A1, B1,Cq be, respectively, points where excircles
tangent sides BC,C A, AB.

Solution.
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ACleBlr—S—a, BAlchlzs—b, CA1:CB1:8—C,
a). Since

AClzBlA:s—a, ClB:BAlzs—b, AlC:CBlzs—c

then

BA; CBliAC’l__s—b's—c g=a
AC BiA CiB s—c s—a g=b

and, therefore, by converse of Ceva’s Theorem cevians AA;, BBy, CC are
concurrent. Let T be point of intersection of these cevians. For P =T we

have
F. _ BA, _s—b _1/(s=c) _(s—b)(s—a)
F, AC s—c 1/(s—b) (s—c)(s—a)
Fo _CiB _ s—b_ 1/(s—a) (s—b)(s—¢)
F, AC, s—a 1/(s=b) (s—c)(s—a)
Hence,

Let 74,7, 7. be exradii of AABC. Since
re(s—a)=rp(s—b)=rc.(s—c)=F

and g +7p + 7. = 4R+ 1r then F, + Fy + F, = rq + 1 + r. and, therefore,

1
(paaplan) = m (Ta, Tb, TC)
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b). Let z:= BA;,y:= CA;. Then z 4+ y = q,

AK = AL < c+zx=b+y

and, therefore,

2z=z+4+y+r—y=a+b—c <<= r=s5—c,y=5—>b
and AK = AL = s.Thus
BAy=BK =5—¢,A1C=CL=s—».
Similarly, BjA =s—¢,ACy =s—b and BC; = CB; = s —a. Then
BA; CB; AC; s—c s—a.s—b

AlC.BlA . C1B T s—b s—c s—a
and, therefore, by converse of Ceva’s Theorem cevians AA;, BBy, CC} are
concurrent. Let E be point of intersection of these cevians. For P = E we

have

=1

F. BA, Fa
Fb—Alc—S—b,Fb _A(Jl —S—b'

g=¢c Fy €1B s—a

Hence,
Fo+F+F.=(s—a)~(s=b)+(s—¢)

and, therefore,

1
(Pas PoaDe) = N (s—a,s—b,s—c).
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Problem 3. Find barycentric coordinates of Lemoine point ( point of
intersection of symmedians).(A—symmedian of triangle ABC'is the reflection
of the A—median in the A—internal angle bisector).

e M L K

Pic.1

Let AM, AL, AK be respectively median, angle-bisector and symmedian of
AABC and let a := BC,b:= CA,c:= AB,mg, := AM,w, := AL, k, :=
AK,p:= ML,q:= KL. Suppose also, that b > ¢. Since AL v is symmedian

in AABC then AL is angle-bisector in triangle M AK and that imply
a _ Ka. : :
L — i.e. there is t > 0 such that k, = tm, and q = tp.Applying

b q
Stewart’s Formula to chevian AL in triangle M AK we obtain:

2 2 q 2 p 2 pq
ws =m: - — k; o p+q . =
. “p+q * ptgq ( ) (p+q)°
2 2
2 q 2 p tma ka 2
= m*. +k o e = + — —t ,
® p+q % p+gq M= gxeurs ¥
because
R qg t
p+q 14+t’p+q 1+t
: , . b
Since AL angle-bisector in AABC then CL = 2% and

b (b—c) b+c
a a a =

—_— Rl T 1 O B : "

b+c 2 2 (b + c) y substitution
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2_bc((b+c)2—a2> 2 (6% +c?) —a? a(b—rc)

2
w? = , m2 = ,p=
; (b+c)? d 4 P 2040
t 2 k?
and kq = tm, in w? = 1T_“t+1jt—tp2 we obtain:
tm? k2 o _ tm}  t*m? 2 2 2
—tp? = o —tp® =t (m2 - p?) =
T+t 1t P T4 T 13: W =t(ma o)

2 +c2 g2 (b—c)2 o b2+c2_a2(b2+02) N
t( 2 —Z<1+(b+c)2>>—t< 2 20+¢)® )

t ((b +e)?— a2) (0*+¢?) B be ((b +¢)? - a2>

2(b+c)? (b+c)?
Ay i
Hence, t 2bc : a:2bcma:bc\/2(b + c2) a,
b2+c2 b2+C2 b2+62
b— b—c) (b+c)® a(b?—c2
pra= =9y a0 (4o _a@r-c)
2(b+c¢) 2(b+c) bB2+c2 202+

and a
CK gtPtqg

FRET TS
KB ([Bahg), . ©

2
So, if L is Lemoin’s Point (point of intersection of symmedians of
AABC) then for barycentric coordinates (La, Ly, Lc) of L holds
Ly+Ly+L.=a®=+p% <2

Distances Formulas.

1. Stewart’s Formula for length of chevian. Let

O?:paa‘f’pb@ yPa +p0p =1,
OP?> = 0P .0P =

then

(paO—A) + pbO—B>) : (paﬁ o pbO?) =p20A? + pOB2 + 2pupy, ((ﬁ : (TB)) -
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.H
Pa (1 —pp) OA® + py (1 — pa) OB? + 2p,py (OA : O?) =
—
PuOA® + POB® ~ pupOA® ~ pupyOB® + 2pap, (04 - OB) =

= p,OA% + p,OB? — p,p, AB2.

So,
OP? = p,0A? + p,OB? — p.p, AB2.

(Stewart’s Formula).

2. Lagrange’s Formula. Let (pg4, py, p.) be baycentric coordinates of the
point P, i.e

Pa+DPp+p.=1

and

OP = p,04 + p,0B + p,OC,

then

OP?= 0P .0P = (pa(ﬁ+pb(ﬁ+pc5_&) 0P =
paﬁ-(ﬁ+pb0‘l§-b—ﬁ+p00?-07=
paOA - ((D—fi+7473)+pb(ﬁ- (O_B>+ﬁ)+pco7~ (0?+6‘?) 5

> (paOAQera(ﬁ-ﬁ) =Y p042+3 p, (O_P)+P—/>1) 4D —

cyc cyc

> 042+ p, (0P - AP). AP =Y p, (0A? - PA%)+Y " p,0B-AD =

cyc cyc cyc cyc
> pa (04— PA%) + OP- Y p, AP = 3 p, (042 - PA?)
cyc cyc cyc

So,

OP? = "p, (0A% - PA?)

cyc
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(Lagrange’s formula).

Remark. As a corollary from Lagrange’s formula we obtain two identities
which can be useful.

Let P and be two points on plane with barycentric coordinates
(Pas Py, pe) and Q (qa, gs, gc), respectively. Since

= pa (QA2 - PA?)

cyc

and PQ? =3 q, (PA? - QA?) we obtain

cyc

22 ) (QA? — PA%) and ) (pa + ) (PA% — QA2) =

cyc cyc

3. Leibnitz Formula
Let Ay, By, C; be points intersection of lines PA,PB,PC with BC,CA, AB
respectively. Applying Stewart Formula to O = A, P and B, C and taking
in account that

BA; = CA; = Pc ~ Db

we obtain
A1P2 - Dy PR2 b De PCQ R 4 . Pc a2
Pb + Pe Pb + Pe Po+Dc Db+ De

and, and since

AP=-_P_7P

Py + Dec
then 2
A P? = “APQ

(pb + pc)

Therefore,
(po + pe)? Po + Pe Po + pe Po+Pe Db+ Pe
— pczzAPQ = Db (pb +pc) fedi s + Pc (pb +pc) P2 pbpcaQ.

Hence,

D_PiAP’ =3 oy (py+p) PB + 3 pe (p +p) PC2 = 3 pypea® =

cyc cyc cyc cyc
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S pepea® = (9 + pepe) PB? + Y (pope +92) PC = ) piAP? =

cyc cyc cyc cyc

S WPB>+Y ppPB2+ Y ppPC? + ) piPC? = piAP? =

cyc cyc cyc

cyc cyc

> ppePB?+ Y pypPC? + ) piPC =
cyc cyc cyc

= " ppePB?+ Y pepaPA® + ) piPC? =

cyc cyc cyc

> " pe (PB? + paPA* + p.PC?) =

cyc

= (pPB® +paPA? +p.PC?) Y pe =) paPA?

cyc cyc

Thus,

ZpaPA2 = ZPbPCGQ

cyc cyc
and, therefore,

OP*=) p, (04> - PA*) <

cyc

OP? = Z paOA? — Z pypea’ (Leibnitz Formula).

cyc cyc
Application of distance formulas.

1. Distance between circumcenter O and centroid G. Let O be
circumcenter, R—circumradius and P = G 3'3'3)° then
1 1
2 2 2 2 2
= — . (RP—GA*)=R"— < GA~.
06* =3 5-( ) 5O

cyclic
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Since
GA% — 4 2(bz+c2) — a? = 2(b2+02) —a?
9 4 N 9

then

cyclic 8
and

0G? = 2 _ a? 4+ b? + ¢2

= 9 )

This imply

a?+ b2+ 2

R2
9

>0 < a’+ b2+ <9R2

2. Distance between circumcenter O and incenter /. (Euler’s
formula and Euler’s inequality). Let O be circumcenter. Since

a b c
a+b+c’a+b+c’at+b+e)’

then
(@+b+c)OI* =3 "a (042~ 14?) =
cyc
= Za (R*—IA4%) = (a+b+c)R? — ZaIAz.
cyc cyc
Since ] :
aw? (b+ c)
al A 5
(a+b+c)
_abc(a+b+c)(b+c—a) (b+c)? _abc(b+c—a)
(a+b+c)?(b+c)? a+b+c
then
Z al A% = abe
cyclic
and
abc 2 4Rrs

OI?> = R? = R? — 2Ry

_a—l—b-l—c:R 2s
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Hence, O = vVR? —2Rr and R2 —2Rr >0 <« R > 2r.

Remark. Consider now general situation, when O be

circumcenter, R— circumradius of circumcircle of AABC and (Pas Db, Pc) is
barycentric coordinates of some point P.Then applying general Leibnitz
Formula for such origin O we obtain:

OP? =3 'p,0A’~Y pipea’ =3 paR*-Y  pypea? = R’ " pypea’.

cyc cyc cyc cyc cyc
Thus
> mpea’ < R?
cyc
and
OP= [R? - ZpbpcaQ.
cyc

Using the formula obtained for the OP, we consider several more cases of
calculating the distances between circumcenter O and another triangle
centers..

But for beginning we will apply this formula for considered above two cases.

111
= —-, =, — h
IftP G<3,3,3> then

> pepea® = % b5

cyc cyc

and, therefore,

OG:\/RZ_M

9
a b c
IfP—I(Q_(;,Z,E) then

1 abc(a+b+c) 4Rrs-2s
2 2 -
g PpPca” = 152 g beca” = 152 Al Tt 2Rr

cyc cyc

and, therefore,

OI = /R? —2Rr
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3. Distance between incenter I and centroid G. Since

ja_35—¢
cos o
and
aQ:(b+c)2—4bccosgg = cos2§=¥
then
IA2:bc(s—a).

S
By replacing O and P in Lagrange’s formula, respectively, with I and

i e |
G<§,§,§> and noting that
ab+bc+ca:82+4Rr—|—r2,a2+b2+02:2(32—4Rr—r2),

abc = 4Rrs we obtain

3 S 9

cyc cyc

fG2=zi<fA2_GA2)=§Z(’"”“‘a>_2<b2+c2>—“2):

g2t DVCCELREE

cyc cyc

_ s(ab+bc+ ca) — 3abc 3(a2+b2+02)
& 3s 27

s(s*+4Rr+1%) —12Rrs  2(s® — 4Rr —r2) _ s*—16Rr + 5r2
3s 9 ¥ 9

Thus,
s2 — 16Rr + 512 >0 <= 52> 16Rr — 5r2 (2-nd Gerretsen’s Inequality)

and

V's2 —16Rr + 512

6=
3
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4. Distance between incenter I and orthocenter H. Since
HA =2Rcos A

then
HA? =4R? (1 —sin® A) = 4R* — a’.

Also note that

B+ +=(a+b+c)?+3abc—3(a+b+c)(ab+bc+ ca) =

= 8s% + 12Rrs — 65 (s* + 4Rr +r?) = 25 (s> — 6Rr — 3r?%)
By replacing O and P in Lagrange’s formula, respectively, with H and

a b ¢ .
I(%’%’éZ_s) we obtain

HI? :Z;—s (HA? — 14%) = %Z (a (4R% — a?) — _“bc(s—a)> &

s
cyc cyc
1 b
=% <4R22a—2a3— i (s—a)) E
. cyc cyc 5 cyc
1
S (8R2s — 25 (s> — 6Rr — 3r?) — 4Rrs) = 4R? + 4Rr + 3r% — s°.
Thus,
4R’ +4Rr+3r’—s? > 0 <— s? < 4R?+4Rr+3r? ( 1-st Gerretsen’s Inequality)

and

HI = \/AR?2 + 4Rr + 3r2 — §2

5. Distance between circumcenter O and orthocenter H. Since

H (cot B cot C, cot C cot A, cot A cot B)
then

Zpbpca2 = ZcothotA~cotAcotB ca? = cotAcothotCZa2cotA.

cyc cyc cyc
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Noting that
Z cot A -a? =

= 4R? ZcotA -sin® A = 2R? Zsin 2A = 8R?sin Asin Bsin C

cyc cyc
and
s> — (2R +1)?
cos Acos Bcos(C = am
we obtain

Zpbpca2 = cot A cot Bcot C Z a’cot A =

cyc cyc
= cot A cot Bcot C - 8R? sin A sin Bsin C' = 8R? cos Acos BcosC =

g 6% = (2R+r)2

=8R*- AR? :2(32—(2R+r)2)

and, therefore,

OH =,/R? -2 <s2 — (2R + r)2> = V9R? + 8Rr + 212 — 242,

And by the way we obtain inequality

2 2
SQS 9R +82R7‘+2T' '

Remark. This inequality also immediately follows from Gerretsen’s
Inequality s> < 4R? + 4Rr + 3r2 and Euler’s Inequality R > 2r. Indeed,

OR®+8Rr + 2 — 25" > OR? + 8Rr +2r® — 2 (4R + 4Rr + 3r2) 7 =

=(R—-2r)(R+2r)
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6. Distance between circumcenter O and point 7.(see Problem 2a.
in Applicationl)
Since for P =T we have

1 1 1
(Pa, P, Pe) = (k(s—a)’ k(s—1b)’ k(s—c))’

1 4R+ r *

h = h
where k = czy:cs " = then
cyc cyc
202
= a®(s—a)
(AR+7)?(s—a)(s—b) (s —c) Zy:
za () Z _4s r(R+7")
(4R+r (4R + )2 sr2 £ 4R+r2 p” (4R +r)?

and, therefore,

oT - . |R2— 4s’r (R+r)
(4R+7)*

And by the way we obtain inequality
2 . R2(4R+1)*
~ 4r((R+r))’

which also can be proved using Gerretsen’s Inequality s? < 4R% + 4Rr + 3r2
and Euler’s Inequality R > 2r.
* Since

S

ab+ bc+ ca = s> + 4Rr + r?,
a? + b + ¢ =4s> —2(ab+bc+ ca) =2 (s> —4Rr —1r?)
a3+ b+ =3abc+ (a+b+c)* —3(a+b+c)(ab+be+ ca) =

=3.4Rrs + 8s° — 65 (8% + 4Rr + %) = 25 (s> — 6Rr — 3r°)
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we obtain

Zaz (s —a) =2s (s —4Rr — r?) — 25 (s> = 6Rr —3r%) = 4rs(R+7)

cyc

7. Distance between circumcenter O and point E (see Problem 2b.
in Applicationl)
Since for P = E we have

1
(Pa, Pbs D) = . (s—a,s—b,s—c)

then

ZPbPCGQ = S%Z(s—b) (s—c)a® =

cyc cyc

= siQ Z (a®s® — a’s (b+ c) + a®bc) =

cyc

:a2+b2+cz+abc(a;b+0) . (a+b+c)(§b+bc+ca) +3(stc:

:2(32—4Rr—r2)+8Rr—2(52+4Rr+r2)+12Rr:4T(R—r)

and,therefore,

OE=+/R2—4r(R—r)=R—-2r

and, by the way, our calculation of QF give us one more proof of Euler’s
Inequality.

8. Distance between circumcenter O and point L (Lemioin’s point).
Since for P = L we have

= 232 2
(paapbapc) = a2+b2+c2 (a , b e )

then

1
Zpbpca2 = (a2 i b2 + 62)2 Z

cyc cyc
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b202 a2 L 3a2b262
(a2 s b2 _+_02)2
and, therefore,
oL — |2 — 3a2b2c? B
(a2 + b2 +c2)2

_ (g 88RWS o 48F?
(a2 + b2 + ¢2)? (a2 + b2 + c2)?

and, by the way, our calculation of QL give us one more proof
of Weitzenbock’s inequality

a2+ b+ % > 4V3F.
Remark. Since
(a® + b + *)° —48F? =

= (a2 gy e 02)2 -3 (20,262 + 20%c2 + 2c%a? — at — bt — c4) —

=4 (a4 + P+t — a2 — a2 — b202)

then

P at + b4 + c* — a?b? — a2c? — 22
(a2 + b2 + c2)?

Problem 4.

Let ABC be a triangle with sidelengths a,b,c and let M be any point
lying on circumcircle of AABC.v Find the maximum and minimum of the
the following expression:

a). a-MA%?+b- MB?+ c- MC?(All Israel Math Olympiad);.
b). tanA-MA?+tanB- MB?+tanC - MC? if AABC is acute angled
triangle;
c). sin24-MA?+sin2B- MB? +sin2C - MC?;
d). a? MA?2+0b®-MB?+c- MC?
MA? i MB? MC?

e). .
) s—a s—b s—c¢
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f). (s—a)MA%+ (s —b) MB2 + (s —c)MC?

Solution. First we consider a common approach to the all these problems
represented in the following general formulation:

Let o, 8,7 be real numbers such that o + B+ #0and let M be any point
lying on circumcircle of a triangle ABC with sidelengths
a,b, c and circumradius R
Find the maximal and the minimal values of the expression:
D(M):= a-MA>+8-MB? +~- MC2.

Let P be a point on the plane with barycentric coordinates

1
EIEI;WﬁW)

Then, by replacing origin O in the Leibnitz Formula with M , We obtain

MP? =3 "paMA® = 3" pypea® =

cyc cyc

1 1
= O[‘MA2__ /37a2¢>
a+6+vczy; (a+ﬂ+’y)2§;

(paaplan) .

D(M):(a+ﬁ+'y)MP2+#ﬁﬂZﬁfya2:

cyc

=(a+B8+7) (MP2 +Zpbpca2> i

cyc

Since )" pypca? isn’t depend from M then the problem reduces to finding the
cyc

largest and smallest value of (o + 3 + v) MP%. Wherein if

a+ B+ v <0 then

max ((a—f—B+fy)MP2) = (a+ B + ) min M P?
and

min ((a—f—ﬁ—i—fy)MPQ) = (a+ B+ ) max M P2,

Bearing in mind the application of the general case to the problems listed
above, and also not to overload the text, we assume further that
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a+ B+~ > 0 and that point P is interior with respect to circumcircle.
Then if d is the distant between point P and circumcenter O then
max M P = R+ d and min MP = R — d.

max D (M) = (a+ B +7) ((R +d)° + Zpbpca2>

cyc

and

min D (M) = (a+ B +7) ((R— d)? + Zpbpca2> :
cyc

Coming back to the listed above subproblems we obtain:

a). Since
(@6,7) = (@,5,6), P = I, (pu,p1rpe) = ( oz, o, =
yPY ) = Uy ) = 1,\Pa;sPb;Pc) = 28’28,26 )
d=0I =+/R2—-2Rr

Z pbpca2 =2Rr

cyc

and

(see Distance between circumcenter O and incenter I ) then for
D(M)=a-MA*+b- MB? +c- MC?
we obtain

max D (M) = (a + b+ c) ((R+ m>2+2Rr) =
=4Rs (R—i— \/M)

and
min D (M) = (a+ b+ ¢) ((R - VR2— 2Rr)2 + 2Rr> =
= 4Rs (R— VR? = 2Rr).
b). Since

(a,B8,7 ) = (tan A, tan B,tan C), (pa,Pv,Pc) =
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= (cot B cot C, cot C cot A, cot A cot B),

2sr

d=OH = \/9R? + 8Rr + 2r2 — 252, tan A+tan B+tanC = -
s2— (2R +7)

and

X:pbpca2 =2 (32 — (2R + 7“)2)

cyc

(see Distance between circumcenter O and orthocenter H ) then for

D(M)=tanA- MA? +tan B- MB? + tanC - MC?

we obtain

max D (M) = (tan A + tan B + tan C) -

: ((R+ VOR? 1 8Rr + 212 — 232>2 42 (32 o (2R+7~)2)> =

2sr
=———— 2R(R+ VIR2 +8Rr +2r2 — 252) =
s2— (2R +7)? ( v )

ARrs (R +VORZ+8Rr + 212 — 232>

s2— (2R + r)2
and
4ARrs (R — VORZF8Rr ¥ 2r2 — 232)
min D (M) = =
s2—(2R+r)
c). Since

(a,B,7 ) = (sin2A4,sin2B,sin2C), P =0,

sin Bsin C'’ sin C'sin A’ sin A sin B

(Pas PosDe) = (
and d = OO0 = 0 then

cos A cos B cosC )

D (M) =sin2A4- MA? +sin2B - MB? +sin2C - MC? =
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. ; ; cos B cosC
- B2 SIB e ac] Z sinCsin A sin Asin Ba2 -
cyc

a? cos BcosC

*4s1nAsmBsmC’Z
sin AsmCSlnB
B C
= 4@20 a’ cossm;l:os — SRQCXyC:sinAcosBcosC’.

That is for any point M that lies on circumcircle D (M) is the constant,

namely

ZsinZA -MA? = 8RQZSinAcosBcosC’.

cyc cyc
d). Since

2 12 2 - _ 2 42 2

(a,ﬁ,y):(a,b,c),P—L, (paapbapc)—m(a,byc)a
/ 4A8F?
d=OL=R . a® =
(a2 i b2 2 ;pbpc
302022 ~ 48R’F?

(a2 + b2 +2)? (a2 + b2+ c2)?

(see Distance between circumcenter O and Lemoin point L ) then for

D(M)= a® - MA?+b?- MB? +c*- MC?
we obtain

max D (M) =

2
48F? A8R*F*
O P2 2 2
=(a“+b"+c RO 1+44/1— oy =
( ) ( \/ (a2 + b2 + 62)2> (a2 + b2 +c2)2

R 2
TR+ <(a2+b2+02+\/(a2+”2+‘32)2—48F2) +48F2> ]
a C




802 Arkady M. Alt

= 2R? (2\/a4 + bt 4 ¢t — a2b? — a2¢2 — B2c2 + a® + b2 + cz)
because

(a2 4 % - 02)2 —48F2 — 4 (a4 + b4+t — a2p? — g2 — b2c2)

d
- (t + 82 — 48F2)2 +48F?% = 9t (\/t2 — 48F2 + t) ,

where t = a® + b2 + 2, Also,

min D (M) =

2
4F2 4 2 12
= (a®+b*+ ) R2<1—\/1-( . ) - i

a2 + b? + 62)2 (a2 + b2 AL C2)2

R? 2
T2+t <02+52+CQ—\/(a2+b2+02)2—48F2) +48F? | =

= 2R? (a2 +02 4+ —2vat + b4+ cf — @282 — g2¢2 — b202>

1 1 1
( | ] >’P:T?
s—a s—b s—c¢

1 1 1
(Pa, pb, pe) = (k(s—a)’ k(s—0b) k(s —c)) ’

e). Since

I

(o, 8,7)

where

2
k::Z 1 :4R+r,d=OT= R2_4sr(R+2r)
= sS—a sr (4R+r)

and

Zpbp Y3 452y (R+r)
erld bt (4R +1r)?
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(see Distance between circumcenter O and T ) then for

MA?  MB?  MC?
+ s

D =
i) s—a s—b s—c

we obtain

1 1 1
maXD(M):(s—a—Fs—b—'_s—c)'

2
4s*r (R+ 1) 4s*r (R+r) |
‘(<R+\/R2_ (4R +r)? ) + (4R +r)? )‘

R2(4R+7)? —4rs2 (R +r
:4R+r.2R<R+\/( ) — drs? ))_

sr 4R +r

2R (R (4R +7) + \/R2 (4R+7)* - 4rs? (R+ r))

ST

and

2R (R (4R+7) — \/R2 (4R +7)? — drs? (R + r>)

ST

min D (M) =
f). Since
(o, B8,7) = (s—a,s—b,s—c),

1
PZE)(pa;pbapc):g(s_aas_bas—c)7

Zpbpca2=47“(R—r),d=OE:R—2r

cyc

(see Distance between circumcenter O and E ) then for

D(M)=(s—a)MA*+ (s —b) MB? + (s — c) MC?

we obtain

maxD(M):s<(R+R—2r)2+4r(R—r)) =4sR(R—r)
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and

minD (M) = s ((R —~(R-2r)+4r(R- r)) = 4Rsr = abe.

Problem 5. Let a,b,c be sidelengths of a triangle ABC. Find point O in
the plane such that the sum
0OA? O0B? 0cC?
b2 + = a?

is minimal.

Solution. Let P be point on the plane with barycentric coordinates

bt i L T
paapbapc - kaa kCQ’ kaQ )

1 1
¥ + 2 + o
Then by Leibnitz Formula

=Y pa0A? = pypea’ = k b2

cyc cyc yc

1 OA%2 1 j S| 0 A?
EZbT_ﬁZc_fz:E(Zb—?_l)‘

cyc cyc

where k =

??'
w
[}
w
Q
[
l

Hence,
2
N % =k-OP? +1

cyc

and, therefore,

2

That is Z P
cyc

AA;, BBy,CC such that

is minimal iff O = P, where P is intersect point of cevians

BA; F.  p. - & 0By pa _a® AC _py b?

A10 - Fb & Db = a2’ BlA .. Pe b2’ClB Pa 0_2
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Problem 6. Let ABC be a triangle with sidelengths
a=BC,b=CA,c= AB and let s, R and r be

semiperimeter, circumradius and inradius of AABC, respectively.
For any point P lying on incircle of AABC let

D (P) := aPA? + bPB? + cPC?.
Prove that D (P) is a constant and find its value in terms of s, R and r.

Solution. Let I be incener of AABC and let (iq,1p,%.) be baricentric
coordinates of I. Since

b 1
(’La,lb,lc) = % (a’7 b? C)

and PI = r then applying Leibnitz Formula for distance between points
I and P we obtain

¥ = PI>=> i,- PA?-) " iyica® = %Zamﬁ— ﬁZbccﬂ =

cyc cyc cyc

4Rrs
2s

1 T 1
:%ZaPAQ—abC S:Q—SZaP/P— :%ZaPAQ—ZRr.

452
cyc cyc

Hence,

Z aPA? = 2s (r2 + 2Rr) .

cyc
Area of a triangle, equation of a line and equation of a circle in
barycentric coordinates.

1. Area of a triangle. First we recall that for any two vectors a, b on the
plane is defined skew product

a A b:=||al ||b]| sin ((z/,\b>

and if (a1,as) , (b1,b2) are Cartesian coordinates of a, b,respectively, then

aAb=det e = a1by — asgb;.
b1 be
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Geometrically a A b is oriented (because a Ab= —bAa ) area of
parallelogram defined by vectors a, b.Obvious that a A b =0 iff a,b are
collinear (in particular a A a =0 for any a).

Using coordinate definition of skew product easy to prove that it is bilinear,
that is

(a+b)Ac=aAhc+bAc

then also

aAN(c+b) = —(c+b)Aa=—(cAa+bAa) = (—cAa)+(=bAa)=arc+ ahb
and

(pa) b =a A (pb)=p(aAb)
for any real p.

For any three point K, L, M on the plane which are not collinear we will use
common notation [K, L, M] for oriented area of AK LM

il —
which equal to 5]@ A KM (in the case if K, L, M are collinear we obtain

1 !
[, L, M] = 0). Regular area of AKLM is - ‘ﬁ A KM‘.
Let P,Q, R be three point on the plane and

(Das Pbs Pe) » (Qas @5 Gc) » (Tas b, Te) be, respectively their barycentric
coordinates with respect to triangle ABC.Then

AP = p,AA + pAB +p.

and, similarly,
E:qu_FqCEa A’ﬁzrb;ﬁ‘+"7"c1ﬁ .

Hence,

@Z(Qb—pb)A—B)vL(qc—pc)ﬁ, P7§=(Tb—pb)Z§+(rc—pc)ﬁ

and, therefore,

2[P,Q,R] = PO A PR =
= ((Qb‘pb)/@"‘((k—pc)m) N <(7'b_pb)1ﬁ+(rc‘pc)m) i
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= (g5 — pv) (re — pe) AB A AC + (gc — pe) (s — ps) AC A AB =

((Qb i pb) (Tc = pc) 8 (Tb i pb) (QC = pc)) zﬁ A\ ﬁ —

=2[A, B,C] - det <q”_pb Tb_p”).
Gc —Pc Tc— Pec

Thus,
[P,Q, R] = det (q” TRk “pb) .[4,B,C].

gc —Pc Tc— Pec

Or, since

det <Qb—pb Tb—pb):
dc —Pc Tec — Pec

= (go — pb) (re — Pc) — (6 — Pb) (gc — Pc) =

1 Db Dc
= PbGc + PcTb + QbTc — PeGb — PoTc —qerp =det | 1 q qc | =
1 7y 72
Pa DPb DPec
= det da b (Qc
Ta T Tc

(because 1 — p, — pc = Pa, 1 — @b — gc = qa, 1 — 75 — e = 74) and, therefore, we
obtain more representative form of obtained correlation (Areas Formula)

Pa DPb DPc
(AF) [P,Q,R]|=det g @ gqc|[A,B,C].
Ta Ty Tec

Using this formula we can to do important conclusion, namely:

Pa Db Pc
Points P, @), R are collinear iff det [ g, q» ¢. | = 0.
Ta Tb Tec
From that immediately follows that set of points on the plane with
T Ly z
barycentric coordinates (z,y, z) such that det | ¢ @ ¢. | = 0 is line
Th ToF Te
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which passed through points Q (¢a, s, q.) and R (ra,Tp,7c) that is
xT Yy z

det | o @ ¢c | =0 is equation of line in baycentric coordinates.
Ta Th Tc

As another application of formula, (AF) we will solve the following

Problem 7. Let AA;, BB;,CC} be cevians of a triangle ABC such that
AB;, CA; BC; 1-t

BiC  AB CiA ¢t

Find the ratio

Solution.

B

Let (pa,pv:Pe) s (as b, qc) 5 (Ta;Tp,7e) be, respectively, barycentric
coordinates of points P, @, R . Then

AlB_ t _& BlC_ t _pa
Alc_l—t_pb’BlA—l—t—pc'

Noting that

Da t _ 2 g 1-t (1-1)?

Pe 1-t t(1-8'p. t t(l—1)

we can conclude that

pa:ktz,pbzk(l—t)Q, pe=kt(1—1t),
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for some k and since p, + pp + p. = 1 we obtain

k<t2+(1—t)2+t(1—t)>=1 — k(—t+1)=

1
=1l k=———.
t2—t4+1
Hence,
SR I R 1 ¢ )
pa_t2—t+1’pb_t2—t+1’pc_t2—t+1'
1—t t
Since&=— and AL we, as above, obtain
Ga t Ga 1-¢
_t1-t) e i (1=t
qa_tg_t+1_pCaqb—t2_t+1*paaqc_t2_t+1_pba
that is

(9a> @b, 9c) = (Pes Pa, Pb)

and, similarly,
(Taa Tb, TC) = (pbapcapa) .

Hence,

[P,Q,R] Pa Pb Pc

m: Pc Pa Pb | =
Pb Pc DPa

= pz + pg 5 pg — 3paPbPc = (pa +py + pc)3 -

=3 (Pa + Pb + Pc) (PaPb + PbPc + PcPa) =
=1-3 (papb + pppe + pcpa) =

M9 (E0-0 HE- t) _ t(1-t)

(2 -t +1)° 2 —t4+1

Equation of a circle in barycentric coordinates. Let O be center of a
circle with radius R. And let P be any point on lying on this circle. If
(0a,0p,0c) and
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(pthpbapc) B (ZE,Z/, Z)

be, respectively, barycentric coordinates of O and P then by Leybnitz
Formula

OP* =3 'p,OA* = Y " pyped® =

cyc cyc
(EC) R? = 20A% + yOB? + 20C? — yza® — zzb? — zyc?.
In particular, if O and R be circumcenter and circumradius of AABC then
2OA? +yOB% + 20C? = R? (z +y + z) = R?
and, therefore,

(ECc¢) yza® + zzb? + zyc? =0

is equation of circumcircle of AABC.
By replacing O and R in (EC) with I (incenter) and 7 (inradius) we obtain

r2 = xIA? + yIB? + 2IC? — yza? — zzb? — zyc?.

b
Since TA = B S la , where [, is length of angle bisector from
a+b+e

Aandl, = ;ﬁzsisc_a) then

(b+c)? dbes(s—a)  be(s —a)

1A% = -
452 (b+c)? s

and, cyclic,

ca(s—0b) ab(s —c)

S

Hence,

(EIc) 7r%s=xbc(s —a) + yea (s —b) + zab (s — c) — yza®—

—zxb? — zyc? —

< zbc(s —a) +yca (s —b) + zab (s — ¢) — yza® — zab? — zyc® =
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=(s—a)(s=Db)(s—c)

is equation of incircle.

More applications to inequalities. For further we will use compact
notations for R, Ry, R. for AP, BP,CP respectively.

Application 1. For triangle AABC with sides a, b, ¢ and arbitrary interior
point P holds inequalities:

2 4 p2 2
H%SR3+R§+R§
3 S i |

Y §) (medians

Proof. Applying Lagrange’s formula to the point G (

intersection point) and point P, we obtain

PG? ;)—(PAQ GA2)+§(PB2—GBQ)+%(PC’2—GCQ):
e S S el
S (Re+RE+R2) — < — (m2+mi+m?) =
3 39
1 4 3
g(R2+Rb+R2) o Z(a +b%+c?).

Hence,
1 2 b2 2
PG’ = 2 (R} + R} + R2) - H%

and that implies inequality

2 b2 2
R+R+R> YT TC

with equality condition P = G (centroid-medians intersection point).

Application 2. Let 2,9, z be any real numbers such that 2 4+ y + 2 = 1 and,
which can be taken as barycentric coordinates of some point P on plane,
that is

(Pa; Py, pe) = (7,9, 2) -

ZxOA2 — Zyza2 =0P?2>0

cyc cyc

Then
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yields inequality

(R) ZxRi > Zyza2,

cyc cyc

where R, := OA, R, :== OB, R, := OC and O is any point in the triangle
T (a,b,c).
In homogeneous form this inequality becomes

(Rh) Z x - Z TR? > Z yza®

cyc cyc cyc

which holds for any real x,y, 2.

fz:=w—v,y:=u—w,z:=v—u then > z =0 and we obtain
cycc

022(u—w)(v—u)a2 =

= Z a® (u—w) (u—1v) >0 (Schure kind Inequality).

cyc

Yy oz

].’%Q’RQ’R2
2 Y 2 9

Z Z_ R R—z R2a <

cyc a cyclic cyc

(RR) ZxRZRE . Z x> Z yza’R2.

cyc cyclic cyc

By replacing (z,y, 2) in (R) with ( ) we obtain

By substitution = aR,, y = bRy, z = cR, in (*) we obtain

Z aRaRZRg . Z aR, >

cycl cyc

> Z bRbcRca2R§ = Z aRyR, - ZaRa > abc-aR, <

cyc cyc cyc

(H) Z aRyR. > abc (T.Hayashi inequality).

cyc
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